Unsere Veröffentlichungen

Publikationen
2025
Choose Your Model Size: Any Compression of Large Language Models Without Re-Computation (2025)
Martin Genzel, Patrick Putzky, Pengfei Zhao, Sebastian Schulze, Mattes Mollenhauer, Robert Seidel, Stefan Dietzel, Thomas Wollmann
2025
Regularized least squares learning with heavy-tailed noise is minimax optimal (2025)
Mattes Mollenhauer, Nicole Mücke, Dimitri Meunier, Arthur Gretton
2025
B. Weiss , K. Eschmann , C. Weinandi , P. Schwarz , F.-Z. Khamlichi , H. Behnke , M. Garafolj , O. Akhtar , A. Loy , H. Schauerte , T. Wollmann , G. Rast
2025
Compressing Large Language Models to Any Size Without Re-Computation (2025)
Martin Genzel, Patrick Putzky, Pengfei Zhao, Sebastian Schulze, Mattes Mollenhauer, Robert Seidel, Stefan Dietzel, Thomas Wollmann
2025
Deep Joint Source-Channel Coding for Small Satellite Applications (2025)
Olga Kondrateva, Grace Li Zhang, Julian Zobel, Björn Scheuermann, Stefan Dietzel
2024
Alireza Sohofi, Tiansu Yu, Alp Aribal, Winfried Loetzsch, Thomas Wollmann
2024
Memorization with neural nets: going beyond the worst case (2024)
Sjoerd Dirksen, Patrick Finke, Martin Genzel
2024
Optimal Rates for Vector-Valued Spectral Regularization Learning Algorithms (2024)
Dimitri Meunier, Zikai Shen, Mattes Mollenhauer, Arthur Gretton, Zhu Li
2024
Towards Optimal Sobolev Norm Rates for the Vector-Valued Regularized Least-Squares Algorithm (2024)
Zhu Li, Dimitri Meunier, Mattes Mollenhauer, Arthur Gretton
2024
Adaptable Deep Joint Source-and-Channel Coding for Small Satellite Applications
Olga Kondrateva, Stefan Dietzel, Björn Scheuermann
2024
Olga Kondrateva; Stefan Dietzel; Björn Scheuermann
2024
DeepRod: A human-in-the-loop system for automatic rodent behavior analysis (2024)
Adrian Loy, Miha Garafolj, Heike Schauerte, Hanna Behnke, Cyrille Charnier, Philipp Schwarz, Georg Rast, Thomas Wollmann
2024
Olga Kondrateva, Stefan Dietzel, Maximilian Schambach, Johannes Otterbach, Björn Scheuermann
2024
Lukas Baur, Konstantin Ditschuneit, Maximilian Schambach, Can Kaymakci, Thomas Wollmann, Alexander Sauer
2024
Viktor Rudel , Georg Vinogradov , Philipp Ganser , Thomas Bergs , Christopher Vahl , Markus Frings , Valentina König , Maximilian Schambach , Stefan Dietzel , Michael Königs
2023
Multiscale Neural Operators for Solving Time-Independent PDEs (2023)
Winfried Ripken, Lisa Coiffard, Felix Pieper, Sebastian Dziadzio
2023
Scaling Experiments in Self-Supervised Cross-Table Representation Learning (2023)
Maximilian Schambach, Dominique Paul, Johannes S. Otterbach
2023
Towards Tabular Foundation Models - Status Quo, Challenges, and Opportunities (2023)
Maximilian Schambach
2023
Self-distilled Representation Learning for Time Series (2023)
Felix Pieper, Konstantin Ditschuneit, Martin Genzel, Alexandra Lindt, Johannes Otterbach
2023
Curve your Enthusiasm: Concurvity Regularization in Differentiable GAMs (2023)
Julien Siems, Konstantin Ditschuneit, Winfried Ripken, Alma Lindborg, Maximilian Schambach, Johannes Otterbach, Martin Genzel
2023
Joint Source-and-Channel Coding for Small Satellite Applications (2023)
Olga Kondrateva, Stefan Dietzel, Björn Scheuermann
2023
SECREDAS: Safe and (Cyber-)Secure Cooperative and Automated Mobility (2023)
Sebastian Gerres
2023
Olga Kondrateva, Stefan Dietzel, Maximilian Schambach, Johannes Otterbach, Björn Scheuermann,
2023
Olga Kondrateva, Stefan Dietzel, Ansgar Lößer, Björn Scheuermann
2023
Uncovering the Inner Workings of STEGO for Safe Unsupervised Semantic Segmentation (2023)
Alexander Koenig, Maximilian Schambach, Johannes S. Otterbach
2023
SECREDAS: Safe and (Cyber-) Secure Cooperative and Automated Mobility (2023)
Chris van der Ploeg, Jacco van de Sluis, Sebastian Gerres, Szabolcs Novaczki, András Wippelhauser, Eric Nassor, Julien Sevin, András Gazdag, Gergely Biczók
2023
NAM-CAM: Neural-Additive Models for Semi-analytic Descriptions of CAM Simulations (2023)
Konstantin Ditschuneit, Adem Frenk, Markus Frings, Viktor Rudel, Stefan Dietzel, Johannes S. Otterbach
2023
Interpretable Reinforcement Learning via Neural Additive Models for Inventory Management (2023)
Julien Siems, Maximilian Schambach, Sebastian Schulze, Johannes S. Otterbach
2022
Auto-Compressing Subset Pruning for Semantic Image Segmentation (2022)
Konstantin Ditschuneit, Johannes S. Otterbach
2022
Towards Learning Self-Organized Criticality of Rydberg Atoms using Graph Neural Networks (2022)
Simon Ohler, Daniel Steven Brady, Winfried Lötzsch, Michael Fleischhauer, Johannes Otterbach
2022
Scalable Flow Optimization for Small Satellite Networks using Benders Decomposition (2022)
Olga Kondrateva, Stefan Dietzel, Björn Scheuermann
2022
Learning the Solution Operator of Boundary Value Problems using Graph Neural Networks (2022)
Winfried Lötzsch, Simon Ohler, Johannes S. Otterbach
2021
Johannes Otterbach, Thomas Wollmann
2021
DAAIN: Detection of Anomalous and Adversarial Input using Normalizing Flows (2021)
Samuel von Baußnern, Johannes Otterbach, Adrian Loy, Mathieu Salzmann, Thomas Wollmann
2021
MEAL: Manifold Embedding-based Active Learning (2021)
Deepthi Sreenivasaiah, Johannes Otterbach, Thomas Wollmann
Jetzt beim Merantix Momentum Newsletter anmelden.
Weitere Artikel
Unsere Veröffentlichungen
Publikationen
2025
Choose Your Model Size: Any Compression of Large Language Models Without Re-Computation (2025)
Martin Genzel, Patrick Putzky, Pengfei Zhao, Sebastian Schulze, Mattes Mollenhauer, Robert Seidel, Stefan Dietzel, Thomas Wollmann
2025
Regularized least squares learning with heavy-tailed noise is minimax optimal (2025)
Mattes Mollenhauer, Nicole Mücke, Dimitri Meunier, Arthur Gretton
2025
B. Weiss , K. Eschmann , C. Weinandi , P. Schwarz , F.-Z. Khamlichi , H. Behnke , M. Garafolj , O. Akhtar , A. Loy , H. Schauerte , T. Wollmann , G. Rast
2025
Compressing Large Language Models to Any Size Without Re-Computation (2025)
Martin Genzel, Patrick Putzky, Pengfei Zhao, Sebastian Schulze, Mattes Mollenhauer, Robert Seidel, Stefan Dietzel, Thomas Wollmann
2025
Deep Joint Source-Channel Coding for Small Satellite Applications (2025)
Olga Kondrateva, Grace Li Zhang, Julian Zobel, Björn Scheuermann, Stefan Dietzel
2024
Alireza Sohofi, Tiansu Yu, Alp Aribal, Winfried Loetzsch, Thomas Wollmann
2024
Memorization with neural nets: going beyond the worst case (2024)
Sjoerd Dirksen, Patrick Finke, Martin Genzel
2024
Optimal Rates for Vector-Valued Spectral Regularization Learning Algorithms (2024)
Dimitri Meunier, Zikai Shen, Mattes Mollenhauer, Arthur Gretton, Zhu Li
2024
Towards Optimal Sobolev Norm Rates for the Vector-Valued Regularized Least-Squares Algorithm (2024)
Zhu Li, Dimitri Meunier, Mattes Mollenhauer, Arthur Gretton
2024
Adaptable Deep Joint Source-and-Channel Coding for Small Satellite Applications
Olga Kondrateva, Stefan Dietzel, Björn Scheuermann
2024
Olga Kondrateva; Stefan Dietzel; Björn Scheuermann
2024
DeepRod: A human-in-the-loop system for automatic rodent behavior analysis (2024)
Adrian Loy, Miha Garafolj, Heike Schauerte, Hanna Behnke, Cyrille Charnier, Philipp Schwarz, Georg Rast, Thomas Wollmann
2024
Olga Kondrateva, Stefan Dietzel, Maximilian Schambach, Johannes Otterbach, Björn Scheuermann
2024
Lukas Baur, Konstantin Ditschuneit, Maximilian Schambach, Can Kaymakci, Thomas Wollmann, Alexander Sauer
2024
Viktor Rudel , Georg Vinogradov , Philipp Ganser , Thomas Bergs , Christopher Vahl , Markus Frings , Valentina König , Maximilian Schambach , Stefan Dietzel , Michael Königs
2023
Multiscale Neural Operators for Solving Time-Independent PDEs (2023)
Winfried Ripken, Lisa Coiffard, Felix Pieper, Sebastian Dziadzio
2023
Scaling Experiments in Self-Supervised Cross-Table Representation Learning (2023)
Maximilian Schambach, Dominique Paul, Johannes S. Otterbach
2023
Towards Tabular Foundation Models - Status Quo, Challenges, and Opportunities (2023)
Maximilian Schambach
2023
Self-distilled Representation Learning for Time Series (2023)
Felix Pieper, Konstantin Ditschuneit, Martin Genzel, Alexandra Lindt, Johannes Otterbach
2023
Curve your Enthusiasm: Concurvity Regularization in Differentiable GAMs (2023)
Julien Siems, Konstantin Ditschuneit, Winfried Ripken, Alma Lindborg, Maximilian Schambach, Johannes Otterbach, Martin Genzel
2023
Joint Source-and-Channel Coding for Small Satellite Applications (2023)
Olga Kondrateva, Stefan Dietzel, Björn Scheuermann
2023
SECREDAS: Safe and (Cyber-)Secure Cooperative and Automated Mobility (2023)
Sebastian Gerres
2023
Olga Kondrateva, Stefan Dietzel, Maximilian Schambach, Johannes Otterbach, Björn Scheuermann,
2023
Olga Kondrateva, Stefan Dietzel, Ansgar Lößer, Björn Scheuermann
2023
Uncovering the Inner Workings of STEGO for Safe Unsupervised Semantic Segmentation (2023)
Alexander Koenig, Maximilian Schambach, Johannes S. Otterbach
2023
SECREDAS: Safe and (Cyber-) Secure Cooperative and Automated Mobility (2023)
Chris van der Ploeg, Jacco van de Sluis, Sebastian Gerres, Szabolcs Novaczki, András Wippelhauser, Eric Nassor, Julien Sevin, András Gazdag, Gergely Biczók
2023
NAM-CAM: Neural-Additive Models for Semi-analytic Descriptions of CAM Simulations (2023)
Konstantin Ditschuneit, Adem Frenk, Markus Frings, Viktor Rudel, Stefan Dietzel, Johannes S. Otterbach
2023
Interpretable Reinforcement Learning via Neural Additive Models for Inventory Management (2023)
Julien Siems, Maximilian Schambach, Sebastian Schulze, Johannes S. Otterbach
2022
Auto-Compressing Subset Pruning for Semantic Image Segmentation (2022)
Konstantin Ditschuneit, Johannes S. Otterbach
2022
Towards Learning Self-Organized Criticality of Rydberg Atoms using Graph Neural Networks (2022)
Simon Ohler, Daniel Steven Brady, Winfried Lötzsch, Michael Fleischhauer, Johannes Otterbach
2022
Scalable Flow Optimization for Small Satellite Networks using Benders Decomposition (2022)
Olga Kondrateva, Stefan Dietzel, Björn Scheuermann
2022
Learning the Solution Operator of Boundary Value Problems using Graph Neural Networks (2022)
Winfried Lötzsch, Simon Ohler, Johannes S. Otterbach
2021
Johannes Otterbach, Thomas Wollmann
2021
DAAIN: Detection of Anomalous and Adversarial Input using Normalizing Flows (2021)
Samuel von Baußnern, Johannes Otterbach, Adrian Loy, Mathieu Salzmann, Thomas Wollmann
2021
MEAL: Manifold Embedding-based Active Learning (2021)
Deepthi Sreenivasaiah, Johannes Otterbach, Thomas Wollmann


.png)
.png)


.png)

.png)