Unsere Veröffentlichungen

Entdecken Sie die neuesten Veröffentlichungen unseres Forschungsteams und mehr
von
Stefan Dietzel

Publikationen

2026

Float8@2bits: Entropy Coding Enables Data-Free Model Compression (Preprint)

Patrick Putzky, Martin Genzel, Mattes Mollenhauer, Sebastian Schulze, Thomas Wollmann, Stefan Dietzel

2025

Choose Your Model Size: Any Compression of Large Language Models Without Re-Computation .

Martin Genzel, Patrick Putzky, Pengfei Zhao, Sebastian Schulze, Mattes Mollenhauer, Robert Seidel, Stefan Dietzel, Thomas Wollmann

Transactions on Machine Learning Research

Regularized least squares learning with heavy-tailed noise is minimax optimal

Mattes Mollenhauer, Nicole Mücke, Dimitri Meunier, Arthur Gretton

Advances in Neural Information Processing Systems (NeurIPS)

Can automatic rodent behavior analysis using AI/ML contribute to drug safety? First insights from DeepRod

B. Weiss, K. Eschmann, C. Weinandi, P. Schwarz, F.-Z. Khamlichi, H. Behnke, M. Garafolj, O. Akhtar, A. Loy, H. Schauerte, T. Wollmann, G. Rast

Toxicology Letters

Robust Weight Imprinting: Insights from Neural Collapse and Proxy-Based Aggregation

Justus Westerhoff, Golzar Atefi, Mario Koddenbrock, Alexei Figueroa, Alexander Löser, Erik Rodner, Felix A. Gers

Transactions on Machine Learning Research

Compressing Large Language Models to Any Size Without Re-Computation

Martin Genzel, Patrick Putzky, Pengfei Zhao, Sebastian Schulze, Mattes Mollenhauer, Robert Seidel, Stefan Dietzel, Thomas Wollmann

ICML Workshop ES-FoMo

Deep Joint Source-Channel Coding for Small Satellite Applications .

Olga Kondrateva, Grace Li Zhang, Julian Zobel, Björn Scheuermann, Stefan Dietzel

2024

Squirrel: A Python library that enables ML teams to share, load, and transform data in a collaborative, flexible, and efficient way

Alireza Sohofi, Tiansu Yu, Alp Aribal, Winfried Loetzsch, Thomas Wollmann

Memorization with neural nets: going beyond the worst case

Sjoerd Dirksen, Patrick Finke, Martin Genzel

Journal of Machine Learning Research

Optimal Rates for Vector-Valued Spectral Regularization Learning Algorithms

Dimitri Meunier, Zikai Shen, Mattes Mollenhauer, Arthur Gretton, Zhu Li

Advances in Neural Information Processing Systems (NeurIPS)

Towards Optimal Sobolev Norm Rates for the Vector-Valued Regularized Least-Squares Algorithm

Zhu Li, Dimitri Meunier, Mattes Mollenhauer, Arthur Gretton

Journal of Machine Learning Research

Adaptable Deep Joint Source-and-Channel Coding for Small Satellite Applications

Olga Kondrateva, Stefan Dietzel, Björn Scheuermann

Quantority: Parameter Prioritization for Incremental Updates of Convolutional Neural Networks in Small Satellite Missions

Olga Kondrateva, Stefan Dietzel, Björn Scheuermann

IFIP Networking Conference

DeepRod: A human-in-the-loop system for automatic rodent behavior analysis

Adrian Loy, Miha Garafolj, Heike Schauerte, Hanna Behnke, Cyrille Charnier, Philipp Schwarz, Georg Rast, Thomas Wollmann

ICML Workshop DMLR

Progressive Updates of Convolutional Neural Networks for Enhanced Reliability in Small Satellite Applications

Olga Kondrateva, Stefan Dietzel, Maximilian Schambach, Johannes Otterbach, Björn Scheuermann

Computer Communications

Explainability and Interpretability in Electric Load Forecasting Using Machine Learning Techniques

Lukas Baur, Konstantin Ditschuneit, Maximilian Schambach, Can Kaymakci, Thomas Wollmann, Alexander Sauer

Energy and AI

Integrating Cloud Computing, Bayesian Optimization, and Neural-Additive Modeling for Enhanced CAM Systems in 5-Axis Milling

Viktor Rudel, Georg Vinogradov, Philipp Ganser, Thomas Bergs, Christopher Vahl, Markus Frings, Valentina König, Maximilian Schambach, Stefan Dietzel, Michael Königs

Procedia CIRP

2023

Multiscale Neural Operators for Solving Time-Independent PDEs

Winfried Ripken, Lisa Coiffard, Felix Pieper, Sebastian Dziadzio

NeurIPS Workshop DLDE

Scaling Experiments in Self-Supervised Cross-Table Representation Learning

Maximilian Schambach, Dominique Paul, Johannes S. Otterbach

NeurIPS Workshop TRL

Towards Tabular Foundation Models - Status Quo, Challenges, and Opportunities

Maximilian Schambach

Self-distilled Representation Learning for Time Series .

Felix Pieper, Konstantin Ditschuneit, Martin Genzel, Alexandra Lindt, Johannes Otterbach

NeurIPS Workshop SSL

Curve your Enthusiasm: Concurvity Regularization in Differentiable GAMs

Julien Siems, Konstantin Ditschuneit, Winfried Ripken, Alma Lindborg, Maximilian Schambach, Johannes Otterbach, Martin Genzel

Advances in Neural Information Processing Systems (NeurIPS)

Joint Source-and-Channel Coding for Small Satellite Applications

Olga Kondrateva, Stefan Dietzel, Björn Scheuermann

IEEE Conference on Local Computer Networks (LCN)

Filling the Gap: Fault-Tolerant Updates of On-Satellite Neural Networks Using Vector Quantization

Olga Kondrateva, Stefan Dietzel, Maximilian Schambach, Johannes Otterbach, Björn Scheuermann

IFIP Networking Conference

Parameter Prioritization for Efficient Transmission of Neural Networks in Small Satellite Applications

Olga Kondrateva, Stefan Dietzel, Ansgar Lößer, Björn Scheuermann

Mediterranean Communication and Computer Networking Conference (MedComNet)

Uncovering the Inner Workings of STEGO for Safe Unsupervised Semantic Segmentation

Alexander Koenig, Maximilian Schambach, Johannes S. Otterbach

CVPR Workshop SAIAD

SECREDAS: Safe and (Cyber-) Secure Cooperative and Automated Mobility

Chris van der Ploeg, Jacco van de Sluis, Sebastian Gerres, Szabolcs Novaczki, András Wippelhauser, Eric Nassor, Julien Sevin, András Gazdag, Gergely Biczók

IFAC World Congress

NAM-CAM: Neural-Additive Models for Semi-analytic Descriptions of CAM Simulations

Konstantin Ditschuneit, Adem Frenk, Markus Frings, Viktor Rudel, Stefan Dietzel, Johannes S. Otterbach

Interpretable Reinforcement Learning via Neural Additive Models for Inventory Management

Julien Siems, Maximilian Schambach, Sebastian Schulze, Johannes S. Otterbach

ICLR Workshop AI4ABM

2022

Auto-Compressing Subset Pruning for Semantic Image Segmentation

Konstantin Ditschuneit, Johannes S. Otterbach

Pattern Recognition

Towards Learning Self-Organized Criticality of Rydberg Atoms using Graph Neural Networks

Simon Ohler, Daniel Steven Brady, Winfried Lötzsch, Michael Fleischhauer, Johannes Otterbach

ICML Workshop AI4Science

Scalable Flow Optimization for Small Satellite Networks using Benders Decomposition

Olga Kondrateva, Stefan Dietzel, Björn Scheuermann

IEEE International Symposium on a World of Wireless, Mobile and Multimedia Networks (WoWMoM)

Learning the Solution Operator of Boundary Value Problems using Graph Neural Networks

Winfried Lötzsch, Simon Ohler, Johannes S. Otterbach

ICML Workshop AI4Science

2021

Chameleon: A Semi-AutoML framework targeting quick and scalable development and deployment of production-ready ML systems for SMEs

Johannes Otterbach, Thomas Wollmann

GI Informatik

DAAIN: Detection of Anomalous and Adversarial Input using Normalizing Flows

Samuel von Baußnern, Johannes Otterbach, Adrian Loy, Mathieu Salzmann, Thomas Wollmann

MEAL: Manifold Embedding-based Active Learning

Deepthi Sreenivasaiah, Johannes Otterbach, Thomas Wollmann

ICCV Workshops

Jetzt beim Merantix Momentum Newsletter anmelden.

Thank you! Your submission has been received!
Oops! Something went wrong while submitting the form.

Weitere Artikel

Die neuesten Branchennachrichten, Interviews, Technologien und Ressourcen.

Vom Buzzword zum Business-Hebel: Wie Business Leader KI praktisch nutzen, für sich selbst und ihr Unternehmen

Ein praktischer Leitfaden für Leader, die KI sinnvoll nutzen wollen, für persönliche Produktivität und Unternehmensimpact.

Vom Engpass zum Durchbruch: Warum KI entscheidend für den Fortschritt in Gesundheitswesen und Pharma ist

Steigende Kosten, Fachkräftemangel und Datenflut bringen das Gesundheitswesen und die Pharmaindustrie an ihre Grenzen. Warum Künstliche Intelligenz jetzt der Schlüssel ist, um Versorgung, Forschung und Entwicklung auf ein neues Level zu heben.

Komplexe KI-Herausforderungen in echte Wirkung verwandeln: Das intelligente Gesundheitssystem für das nächste Jahrzehnt

Wie KI, Zusammenarbeit und sichere Dateninfrastrukturen Forschung, Diagnostik und Versorgung neu definieren und den Weg zum intelligenten Gesundheitssystem der nächsten Dekade ebnen.

Vom Engpass zum Durchbruch: Warum KI entscheidend für den Fortschritt in Gesundheitswesen und Pharma ist

Steigende Kosten, Fachkräftemangel und Datenflut bringen das Gesundheitswesen und die Pharmaindustrie an ihre Grenzen. Warum Künstliche Intelligenz jetzt der Schlüssel ist, um Versorgung, Forschung und Entwicklung auf ein neues Level zu heben.

Warum Compliance-Verantwortliche sich KI nicht länger leisten können zu ignorieren

Compliance-Teams in der Schweiz stehen vor einer Flut an Vorschriften. Erfahren Sie, wie KI Banken, Versicherungen und Kanzleien entlastet – und Compliance smarter macht.

Unsere Veröffentlichungen

Publikationen

2026

Float8@2bits: Entropy Coding Enables Data-Free Model Compression (Preprint)

Patrick Putzky, Martin Genzel, Mattes Mollenhauer, Sebastian Schulze, Thomas Wollmann, Stefan Dietzel

2025

Choose Your Model Size: Any Compression of Large Language Models Without Re-Computation .

Martin Genzel, Patrick Putzky, Pengfei Zhao, Sebastian Schulze, Mattes Mollenhauer, Robert Seidel, Stefan Dietzel, Thomas Wollmann

Transactions on Machine Learning Research

Regularized least squares learning with heavy-tailed noise is minimax optimal

Mattes Mollenhauer, Nicole Mücke, Dimitri Meunier, Arthur Gretton

Advances in Neural Information Processing Systems (NeurIPS)

Can automatic rodent behavior analysis using AI/ML contribute to drug safety? First insights from DeepRod

B. Weiss, K. Eschmann, C. Weinandi, P. Schwarz, F.-Z. Khamlichi, H. Behnke, M. Garafolj, O. Akhtar, A. Loy, H. Schauerte, T. Wollmann, G. Rast

Toxicology Letters

Robust Weight Imprinting: Insights from Neural Collapse and Proxy-Based Aggregation

Justus Westerhoff, Golzar Atefi, Mario Koddenbrock, Alexei Figueroa, Alexander Löser, Erik Rodner, Felix A. Gers

Transactions on Machine Learning Research

Compressing Large Language Models to Any Size Without Re-Computation

Martin Genzel, Patrick Putzky, Pengfei Zhao, Sebastian Schulze, Mattes Mollenhauer, Robert Seidel, Stefan Dietzel, Thomas Wollmann

ICML Workshop ES-FoMo

Deep Joint Source-Channel Coding for Small Satellite Applications .

Olga Kondrateva, Grace Li Zhang, Julian Zobel, Björn Scheuermann, Stefan Dietzel

2024

Squirrel: A Python library that enables ML teams to share, load, and transform data in a collaborative, flexible, and efficient way

Alireza Sohofi, Tiansu Yu, Alp Aribal, Winfried Loetzsch, Thomas Wollmann

Memorization with neural nets: going beyond the worst case

Sjoerd Dirksen, Patrick Finke, Martin Genzel

Journal of Machine Learning Research

Optimal Rates for Vector-Valued Spectral Regularization Learning Algorithms

Dimitri Meunier, Zikai Shen, Mattes Mollenhauer, Arthur Gretton, Zhu Li

Advances in Neural Information Processing Systems (NeurIPS)

Towards Optimal Sobolev Norm Rates for the Vector-Valued Regularized Least-Squares Algorithm

Zhu Li, Dimitri Meunier, Mattes Mollenhauer, Arthur Gretton

Journal of Machine Learning Research

Adaptable Deep Joint Source-and-Channel Coding for Small Satellite Applications

Olga Kondrateva, Stefan Dietzel, Björn Scheuermann

Quantority: Parameter Prioritization for Incremental Updates of Convolutional Neural Networks in Small Satellite Missions

Olga Kondrateva, Stefan Dietzel, Björn Scheuermann

IFIP Networking Conference

DeepRod: A human-in-the-loop system for automatic rodent behavior analysis

Adrian Loy, Miha Garafolj, Heike Schauerte, Hanna Behnke, Cyrille Charnier, Philipp Schwarz, Georg Rast, Thomas Wollmann

ICML Workshop DMLR

Progressive Updates of Convolutional Neural Networks for Enhanced Reliability in Small Satellite Applications

Olga Kondrateva, Stefan Dietzel, Maximilian Schambach, Johannes Otterbach, Björn Scheuermann

Computer Communications

Explainability and Interpretability in Electric Load Forecasting Using Machine Learning Techniques

Lukas Baur, Konstantin Ditschuneit, Maximilian Schambach, Can Kaymakci, Thomas Wollmann, Alexander Sauer

Energy and AI

Integrating Cloud Computing, Bayesian Optimization, and Neural-Additive Modeling for Enhanced CAM Systems in 5-Axis Milling

Viktor Rudel, Georg Vinogradov, Philipp Ganser, Thomas Bergs, Christopher Vahl, Markus Frings, Valentina König, Maximilian Schambach, Stefan Dietzel, Michael Königs

Procedia CIRP

2023

Multiscale Neural Operators for Solving Time-Independent PDEs

Winfried Ripken, Lisa Coiffard, Felix Pieper, Sebastian Dziadzio

NeurIPS Workshop DLDE

Scaling Experiments in Self-Supervised Cross-Table Representation Learning

Maximilian Schambach, Dominique Paul, Johannes S. Otterbach

NeurIPS Workshop TRL

Towards Tabular Foundation Models - Status Quo, Challenges, and Opportunities

Maximilian Schambach

Self-distilled Representation Learning for Time Series .

Felix Pieper, Konstantin Ditschuneit, Martin Genzel, Alexandra Lindt, Johannes Otterbach

NeurIPS Workshop SSL

Curve your Enthusiasm: Concurvity Regularization in Differentiable GAMs

Julien Siems, Konstantin Ditschuneit, Winfried Ripken, Alma Lindborg, Maximilian Schambach, Johannes Otterbach, Martin Genzel

Advances in Neural Information Processing Systems (NeurIPS)

Joint Source-and-Channel Coding for Small Satellite Applications

Olga Kondrateva, Stefan Dietzel, Björn Scheuermann

IEEE Conference on Local Computer Networks (LCN)

Filling the Gap: Fault-Tolerant Updates of On-Satellite Neural Networks Using Vector Quantization

Olga Kondrateva, Stefan Dietzel, Maximilian Schambach, Johannes Otterbach, Björn Scheuermann

IFIP Networking Conference

Parameter Prioritization for Efficient Transmission of Neural Networks in Small Satellite Applications

Olga Kondrateva, Stefan Dietzel, Ansgar Lößer, Björn Scheuermann

Mediterranean Communication and Computer Networking Conference (MedComNet)

Uncovering the Inner Workings of STEGO for Safe Unsupervised Semantic Segmentation

Alexander Koenig, Maximilian Schambach, Johannes S. Otterbach

CVPR Workshop SAIAD

SECREDAS: Safe and (Cyber-) Secure Cooperative and Automated Mobility

Chris van der Ploeg, Jacco van de Sluis, Sebastian Gerres, Szabolcs Novaczki, András Wippelhauser, Eric Nassor, Julien Sevin, András Gazdag, Gergely Biczók

IFAC World Congress

NAM-CAM: Neural-Additive Models for Semi-analytic Descriptions of CAM Simulations

Konstantin Ditschuneit, Adem Frenk, Markus Frings, Viktor Rudel, Stefan Dietzel, Johannes S. Otterbach

Interpretable Reinforcement Learning via Neural Additive Models for Inventory Management

Julien Siems, Maximilian Schambach, Sebastian Schulze, Johannes S. Otterbach

ICLR Workshop AI4ABM

2022

Auto-Compressing Subset Pruning for Semantic Image Segmentation

Konstantin Ditschuneit, Johannes S. Otterbach

Pattern Recognition

Towards Learning Self-Organized Criticality of Rydberg Atoms using Graph Neural Networks

Simon Ohler, Daniel Steven Brady, Winfried Lötzsch, Michael Fleischhauer, Johannes Otterbach

ICML Workshop AI4Science

Scalable Flow Optimization for Small Satellite Networks using Benders Decomposition

Olga Kondrateva, Stefan Dietzel, Björn Scheuermann

IEEE International Symposium on a World of Wireless, Mobile and Multimedia Networks (WoWMoM)

Learning the Solution Operator of Boundary Value Problems using Graph Neural Networks

Winfried Lötzsch, Simon Ohler, Johannes S. Otterbach

ICML Workshop AI4Science

2021

Chameleon: A Semi-AutoML framework targeting quick and scalable development and deployment of production-ready ML systems for SMEs

Johannes Otterbach, Thomas Wollmann

GI Informatik

DAAIN: Detection of Anomalous and Adversarial Input using Normalizing Flows

Samuel von Baußnern, Johannes Otterbach, Adrian Loy, Mathieu Salzmann, Thomas Wollmann

MEAL: Manifold Embedding-based Active Learning

Deepthi Sreenivasaiah, Johannes Otterbach, Thomas Wollmann

ICCV Workshops

Oops! Da ist etwas schiefgelaufen.
Oops! Da ist etwas schiefgelaufen.
Oops! Da ist etwas schiefgelaufen.
Oops! Da ist etwas schiefgelaufen.
Oops! Da ist etwas schiefgelaufen.

Mehr Whitepaper entdecken

Artificial Intelligence for Private Equity Portfolios

Wertsteigerung für Ihr gesamtes Portfolio

Der AI Canvas: Unser Tool zur Projektevaluation

Entdecken Sie den AI Canvas!

Towards Tabular Foundation Models

Über den Status Quo, Herausforderungen und Chancen

Datengetrieben zum Medikament von Morgen

Chancen und Hindernisse der KI in einer GxP Welt.

Der AI Canvas: Unser Tool zur Projektevaluation

Entdecken Sie den AI Canvas!

Towards Tabular Foundation Models

Über den Status Quo, Herausforderungen und Chancen

Jetzt im Merantix Momentum Newsletter anmelden.

Thank you! Your submission has been received!
Oops! Something went wrong while submitting the form.